Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №3B4B4B

Задача №716 из 1084
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 136. Найдите стороны треугольника ABC.

Решение задачи:

Вариант №1
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=136/2=68.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(136*68)/2=68*68=4624
SABE=(BE*AO)/2=(136*68)/2=4624
Т.е. SABE=SEDC=SEDB=4624
Тогда, SABС=3*4624=13872
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(136*BO)/2=13872/2
BO=13872/136=102
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=1022+682
AB2=10404+4624=15028
AB=15028=4*3757=4*13*289=2*17*13=3413
BC=2AB=2*3413=6813
Рассмотрим треугольник AOE.
OE=BE-BO=136-102=34
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=682+342=4624+1156=5780
AE=5780=4*5*289=2*17*5=345
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
6813/3413=CE/(345)
2=CE/(345)
CE=685
AC=AE+CE=345+685=1025
Ответ: AB=3413, BC=6813, AC=1025


Вариант №2 (Предложил Всеволод).
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD и AO=OD=AD/2=136/2=68.
Проведём через точку C прямую, параллельную AD. Продлим BA и BE до пересечения с этой прямой в точках F и G соответственно.
AF=AB (по теореме Фалеса. AD и FC параллельны и разбивают BC на два отрезка 1:1, т.е. на равные отрезки, следовательно и BF они разобьют на равные отрезки).
Тогда получается, что:
AF=AB=BD=CD
Т.е. получается равнобедренный треугольник BCF со средней линией AD и медианами BG и CA, которые в точке пересечения E делятся в отношении 2:1 считая от вершин (по свойству медианы).
BE=136 (по условию задачи)
EG=BE/2=136/2=68
BG=BE+EG=136+68=204
BO=OG=BG/2=204/2=102
Рассмотрим треугольник ABO.
Он прямоугольный (по условию задачи), тогда по теореме Пифагора:
AB2=BO2+AO2
AB2=1022+682
AB2=10404+4624
AB2=15028
AB=15028=1156*13=1156*13=3413
BC=2AB=2*3413=6813
Рассмотрим треугольник AOE.
OE=OG-EG=102-68=34.
AOE тоже прямоугольный, следовательно по теореме Пифагора:
AE2=AO2+OE2
AE2=682+342
AE2=4624+1156=5780
AE=5780=1156*5=345
EC=2AE=2*345=685 (мы ранее выяснили, что медианы делятся в отношении 2:1 начиная от вершины)
AC=AE+EC=345+685=1025
Ответ: AB=3413, BC=6813, AC=1025

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №4A5C29

Найдите площадь треугольника, изображённого на рисунке.

Задача №DF340B

В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=8.

Задача №E50109

В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.

Задача №A810F6

Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.

Задача №96EB5A

Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика