Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Татьяна
Юмор от моей мамы.
Дано: таракан залез в окно.
Требуется доказать, как он будет ...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №70 из 912. Номер задачи на WWW.FIPI.RU - 0CC927


В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники BCE и EDA. CE=ED, т.к. точка E - середина CD, EA=EB (из условия задачи), CB=AD (по свойству параллелограмма). Соответственно, треугольники BCE и EDA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BCE=/EDA.
BC||AD (по определению параллелограмма), рассмотрим сторону CD как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BCE и EDA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону BC как секущую к этим параллельным сторонам.
/CBA и /ECB - внутренние односторонние. Следовательно их сумма равна 180°. А так как /ECB=90°, то /CBA тоже равен 90°.
Аналогично доказывается, что /DAB тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 912)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика