Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Площадь
трапеции равна произведению полусуммы оснований на высоту. Основания нам известны, найдем высоту трапеции.
Проведем высоту как показано на рисунке. Получившийся треугольник является
прямоугольным. По
определению синуса можем записать: sin30°=h/5 => h=5*sin30°, sin30°=1/2 (
табличное значение).
h=5*1/2=2,5.
Sтрапеции=(3+9)/2*2,5=15
Ответ: площадь трапеции равна 15.
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).
В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC известно, что AC=54, BM — медиана, BM=43. Найдите AM.
Комментарии: