В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.
По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в
трапеции основания параллельны).
Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е.
Продолжим стороны AB и CD до пересечения в точке T.
Проведем CK параллельно AB.
AK=BС (т.к. ABKC -
прямоугольник).
KD=AD-AK=14-12=2
По
определению косинуса: cos∠CDK=KD/CD=2/CD
Рассмотрим треугольники TCB и CKD.
∠CTB=∠DCK (т.к. это
соответственные углы при параллельных прямых TA и CK)
∠TBC=∠CKD=90°
Следовательно, эти треугольники
подобны (по
первому признаку подобия).
Тогда, BC/KD=TC/CD
12/2=TC/CD
TC=6CD
По
теореме о касательно и секущей:
TE2=TD*TC=(TC+CD)*TC=(6CD+CD)6CD=7CD*6CD=42CD2
TE=CD√
Рассмотрим треугольники TEF и TAD.
∠CTB - общий
∠EFT=∠TAD=90°
Следовательно, применив
теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT (=∠CDK).
Следовательно, cos∠TEF=cos∠ADT(=cos∠CDK).
EF=TE*cos∠TEF=TE*cos∠ADT=2TE/CD=2CD√
Ответ: EF=2√
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=28, AC=24, MN=18. Найдите AM.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 3 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Комментарии:
(2017-06-03 19:47:21) Администратор: Катя, я подписал в решении, чтобы стало понятней. ∠ADT - это ∠CDK, который равен 2/CD (это мы нашли ранее).
(2017-06-03 01:35:19) Катя: Объясните пожалуйста последнюю строчку в решении : почему произведение косинуса угла ADT на TE равно 2TE/CD?