Площадь прямоугольного треугольника равна 968√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin60°=√
sin60°=a/c=√
c=2a/√
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a/√
a2+b2=4a2/3
3(a2+b2)=4a2
3a2+3b2=4a2
3b2=a2
b2=a2/3
b=a/√
Из условия: Sтреугольника=ab/2=968√
a*(a/√
a2/√
a2=√
a2=1936(√
a2=1936
a=44
Ответ: a=44
Поделитесь решением
Присоединяйтесь к нам...
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.
Найдите площадь треугольника, изображённого на рисунке.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 136. Найдите стороны треугольника ABC.
Найдите угол ABC. Ответ дайте в градусах.
Радиус вписанной в квадрат окружности равен 14√
Комментарии: