В трапеции ABCD AB=CD, ∠BDA=54° и ∠BDC=33°. Найдите угол ABD. Ответ дайте в градусах.
∠ADC=∠BDA+∠BDC=54°+33°=87°.
Трапеция ABCD -
равнобедренная (т.к. AB=CD), следовательно, по
свойству равнобедренной трапеции, ∠BAD=∠ADC=87°.
Сумма углов любого выпуклого n-угольника равна 180°*(n-2).
Тогда сумма углов трапеции равна 180°*(4-2)=360°, следовательно ∠ABC+∠BCD=360°-87°-87°=186°
По тому же
свойству равнобедренной трапеции ∠ABC=∠BCD, тогда каждый из этих углов равен 186°/2=93°
В любой трапеции основания параллельны (по
определению), т.е. AD||BC, тогда, рассматривая BD как секущую, заметим, что ∠CBD=∠BDA=54° (т.к. это
внутренние накрест лежащие углы).
Тогда ∠ABD=∠ABC-∠CBD=93°-54°=39°
Ответ: 39
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45°. Найдите больший угол параллелограмма.
Периметр треугольника равен 33, одна из сторон равна 7,
а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
Комментарии:
(2017-10-04 18:10:11) Администратор: Без вопроса, нет ответа.
(2017-10-03 15:43:18) : в трапеции авсд известно что ав сд угол вда 30 и угол вдс 110