Периметр треугольника равен 33, одна из сторон равна 7,
а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=33/2=16,5
S=r*p=2*16,5=33
Ответ: 33
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=6, tgA=2√
В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.
В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 14°. Ответ дайте в градусах.
Площадь прямоугольного треугольника равна 968√
Комментарии:
(2018-09-14 20:27:29) Администратор: DFcz, это лишнее условие для данной задачи. Такое бывает...
(2018-06-02 18:34:16) DFcz : А сторона зачем?