Периметр треугольника равен 33, одна из сторон равна 7,
а радиус вписанной в него окружности равен 2. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=33/2=16,5
S=r*p=2*16,5=33
Ответ: 33
Поделитесь решением
Присоединяйтесь к нам...
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 136. Найдите стороны треугольника ABC.
Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
Один из углов параллелограмма равен 111°. Найдите меньший угол этого параллелограмма. Ответ дайте
в градусах.
Комментарии:
(2018-09-14 20:27:29) Администратор: DFcz, это лишнее условие для данной задачи. Такое бывает...
(2018-06-02 18:34:16) DFcz : А сторона зачем?