ОГЭ, Математика. Геометрия: Задача №C396A2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №C396A2

Задача №54 из 1084
Условие задачи:

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.

Решение задачи:

Рассмотрим треугольник АРС.
По определению tgBAC=СР/АР=0,75 => CP=0,75AP
Радиус вписанной в прямоугольный треугольник окружности равен r=(AP+CP-AC)/2
Подставляем СР=0,75AP
2r=AP+0,75AP-AC
2r=1,75AP-AC
2*4+AC=1,75AP
AP=(8+AC)/1,75 (поставим здесь пометку 1, чуть позднее вернемся к ней)
По теореме Пифагора AC2=AP2+CP2
AC2=AP2+(0,75AP)2
AC2=AP2(1+0,752)
AC2=AP2*(1+0,5625)
AC2=AP2*1,5625
AC=AP*1,25
Из пометки 1 подставляем AP
AC=1,25*(8+AC)/1,75
1,75AC=1,25(8+AC) сократим на 25
0,07AC=0,05(8+AC) умножим правую и левую часть уравнения на 100 (для удобства)
7AC=5(8+AC)
7AC=40+5AC
2AC=40
AC=20
Теперь рассмотрим большой треугольник АВС и проведем для него те же операции, но сразу с числами
tgBAC=BC/AC => 0,75=BC/20 => BC=0,75*20=15
По теореме Пифагора запишем AB2=AC2+BC2
AB2=202+152
AB2=400+225=625
AB=25
Теперь все полученые данные подставляем в формулу радиуса окружности
R=(AC+BC-AB)/2
R=(20+15-25)/2
R=10/2
R=5
Ответ: R=5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FB77A4

Точка О – центр окружности, /ACB=32° (см. рисунок). Найдите величину угла AOB (в градусах).



Задача №037EE9

Лестницу длиной 2 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,2 м?



Задача №A7F300

В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.



Задача №C14EA3

Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.



Задача №03D0F6

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Комментарии:


(2017-03-17 01:56:14) Администратор: Евгения, есть соответствующая теорема.
(2017-03-16 10:50:32) Евгения: откуда берется это утверждение: \"Радиус вписанной в прямоугольный треугольник окружности равен r=(AP+CP-AC)/2\" ?
(2015-09-19 19:08:54) Людмила: Огромное спасибо за помощь и удобный интерфейс сайта!
(2015-02-25 14:35:41) мария: спасибо за ваш сайт

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика