Середина M стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 129° и 96°.
Сумма углов любого выпуклого n-угольника равна (n-2)180, тогда сумма углов четырехугольника (4-2)180=360.
Т.е. ∠A+∠B+∠C+∠D=360
∠A+129°+96°+∠D=360°
∠A+∠D=135°
Треугольники AEB, BEC и ECD -
равнобедренные, т.к. стороны AE=EB=EC=ED.
Следовательно:
∠A=∠ABE
∠EBC=∠ECB
∠ECD=∠D
Использую сумму углов четырехугольника, запишем:
∠A+∠ABE+∠EBC+∠ECB+∠ECD+∠D=360°
Используя ранее полученные равенства, запишем:
∠A+∠A+2∠EBC+∠D+∠D=360°
2∠A+2∠EBC+2∠D=360°
∠A+∠EBC+∠D=180°
135°+∠EBC=180°
∠EBC=45°
Рассмотрим треугольник EBC.
BE=CE (по условию задачи)
Следовательно, треугольник EBC
равнобедренный.
По
свойству равнобедренного треугольника:
∠EBC=∠ECB=45°
По
теореме о сумме углов треугольника:
180°=∠EBC+∠ECB+∠BEC
180°=45°+45°+∠BEC
∠BEC=90°
Получается, что треугольник EBC не только
равнобедренный, но и
прямоугольный.
Тогда по
теореме Пифагора:
BC2=BE2+CE2
64=BE2+CE2
Так как BE=CE, то BE2=CE2=64/2=32
BE=CE=√
AD=AE+ED=√
Ответ: AD=8√
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=5, а расстояние от точки K до стороны AB равно 5.
Комментарии: