ОГЭ, Математика. Геометрия: Задача №B99C57 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №B99C57

Задача №506 из 1087
Условие задачи:

Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).

Решение задачи:

Чтобы определить высоту, на которую поднимается лестница, надо узнать количество ступеней и умножить на высоту ступени.
Каждая ступенька представляет из себя прямоугольный треугольник, следовательно расстояние между точками А и В будет равняться сумме гипотенуз ступеней.
По теореме Пифагора:
Квадрат гипотенузы одной ступени равен 10,52+362=110,25+1296=1406,25
Тогда длина гипотенузы равна 1406,25 =37,5 см.
1500/37,5=40 ступеней составляют лестницу.
10,5*40=420 см - высота лестницы = 4,2 м
Ответ: 4,2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A3FFD2

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, AC=64. Найдите AK.



Задача №E5A864

Углы B и C треугольника ABC равны соответственно 66° и 84°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 15.



Задача №0208A9

В треугольнике ABC угол C равен 90°, BC=2, sinA=0,2. Найдите AB.



Задача №2D9C40

Сторона ромба равна 26, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №797303

Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=18, DK=9, BC=16. Найдите AD.

Комментарии:


(2017-02-24 20:04:10) Администратор: Марина, потому, что \"каждая ступенька - это прямоугольный треугольник\", а расстояние между точками - это гипотенуза этого треугольника. Можно, конечно, решать и без теоремы Пифагора, через теорему косинусов, или через радиус описанной окружности, но это усложнит решение.
(2017-02-24 19:04:43) Марина: Почему решается по теореме пифагора?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика