Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Рассмотрим каждое утверждение:
1) "Существует квадрат, который не является прямоугольником" - это утверждение неверно, т.к. противоречит определению квадрата.
2) "Если два угла треугольника равны, то равны и противолежащие им стороны", это утверждение верно по
свойству равнобедренного треугольника.
3) "Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.", это утверждение верно по
свойству углов.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите угол A. Ответ дайте в градусах.
Найдите тангенс угла AOB, изображённого на рисунке.
На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=40, BC=45 и CD=24.
Комментарии: