Найдите угол ABC . Ответ дайте в градусах.
Проведем отрезки как показано на рисунке.
∠AOC -
центральный угол.
По рисунку (по клеточкам) видно, что ∠AOC=90°
Следовательно дуга ABC=90°
Тогда дуга ADC=360°-90°=270°
∠ABC опирается на эту дугу ADC и является
вписанным, по
теореме о вписанном угле:
∠ABC=270°/2=135°
Ответ: 135
Поделитесь решением
Присоединяйтесь к нам...
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 12°?
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.
На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
Комментарии:
(2015-04-06 22:54:44) Администратор: Елена, тоже вариант...
(2015-04-06 22:20:14) Елена: По сетке чётко видно, что АВС - это часть вписанного в окружность правильного восьмиугольника. Угол АВС - угол правильного восьмиугольника. Он равен 180*(8-2)/8=135