На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
Проведем через точку F
высоту
трапеции h.
Высота h делится точкой F пополам, т.к. располагается на
средней линии, а средняя линия делит стороны трапеции пополам.
Таким образом получается, что высота обоих треугольников равна h/2.
Площадь треугольника равна половине произведения высоты на основание треугольника.
Площадь трапеции равна произведению полусуммы оснований на высоту.
SBFC=(h/2)*BC/2
SAFD=(h/2)*AD/2
SBFC+SAFD=(h/2)*BC/2+(h/2)*AD/2=(h/2)(BC+AD)/2=(h*(BC+AD)/2)/2=SABCD/2
Поделитесь решением
Присоединяйтесь к нам...
Площадь равнобедренного треугольника равна 144√
Найдите угол ABC. Ответ дайте в градусах.
Площадь круга равна 78. Найдите площадь сектора этого круга, центральный угол которого равен 60°.
В трапеции ABCD AB=CD, ∠BDA=54° и ∠BDC=33°. Найдите угол ABD. Ответ дайте в градусах.
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Комментарии: