На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.
Проведем через точку F
высоту
трапеции h.
Высота h делится точкой F пополам, т.к. располагается на
средней линии, а средняя линия делит стороны трапеции пополам.
Таким образом получается, что высота обоих треугольников равна h/2.
Площадь треугольника равна половине произведения высоты на основание треугольника.
Площадь трапеции равна произведению полусуммы оснований на высоту.
SBFC=(h/2)*BC/2
SAFD=(h/2)*AD/2
SBFC+SAFD=(h/2)*BC/2+(h/2)*AD/2=(h/2)(BC+AD)/2=(h*(BC+AD)/2)/2=SABCD/2
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=8, sinA=0,4. Найдите AB.
Стороны AC, AB, BC треугольника ABC равны 2√
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.
Найдите тангенс угла AOB, изображённого на рисунке.
Комментарии: