Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Описать окружность можно только около
равнобокой трапеции (по
свойству трапеции).
Получается, что наша
трапеция - равнобокая (или равнобедренная).
Пусть 49° равняется угол BAD.
∠BAD=∠ADC=49° (по
свойству равнобедренной трапеции).
Сумма углов выпуклого n-угольника вычисляется по формуле (n-2)180°, тогда сумма углов трапеции равна (4-2)180°=360°.
360°=∠BAD+∠ADC+∠DCB+∠CBA
360°=49°+49°+∠DCB+∠CBA
∠DCB+∠CBA=262°
∠DCB=∠CBA (по
свойству равнобедренной трапеции).
Тогда ∠DCB=∠CBA=262°/2=131°
Ответ: ∠DCB=∠CBA=131°, ∠BAD=∠ADC=49°
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 10, 9 и 6. Найдите площадь параллелограмма ABCD.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
Комментарии:
(2015-05-16 19:27:30) Светлана: Пусть угол А равен 39 гр. Углы А и В внутренние односторонние при параллельных BC и АD и секущей AB. Тогда угол B равен 180-39 = 141. Условие вписанного в окружность четырёхугольника: сумма противоположных углов равна 180 градусов. Значит угол С равен 180-39 = 141. Тогда на угол D приходится 39 градусов.
(2015-05-05 12:17:53) Жека: АВТАР ВАЩЕ КРАСАВА