В окружности с центром в точке O проведены диаметры
AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
Вариант №1 Предложил пользователь Гоша.
Очевидно, что угол OAB это угол DAB, а ∠DAB является вписанным и опирается на дугу BD.
∠OCD тоже является вписанным и опирается на дугу BD.
Тогда, по теореме о вписанном угле, эти углы равны:
∠OCD=∠OAB=70°.
Ответ: 70
Вариант №2
Рассмотрим треугольник АОВ. Этот треугольник
равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По
свойству равнобедренного треугольника ∠OAB=∠OBA.
Рассмотрим треугольники АОВ и COD. ∠DOC=∠AOB, т.к. они
вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по первому признаку). Поэтому ∠OBA=∠OAB=∠ODC=∠OCD=70°
Ответ: 70
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=5, а расстояние от точки K до стороны AB равно 5.
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=22.
В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Комментарии:
(2019-06-03 21:42:10) Администратор: Гоша, да, действительно. Элегантно и просто. Обязательно скоро размещу такое решение под Вашим именем. Спасибо!
(2019-06-03 12:10:28) гоша: А разве нельзя сразу заключить, что этот угол равен 70 градусам, так как опирается на ту же дугу что и данный угол