Сторона AC треугольника ABC проходит через центр окружности. Найдите
∠C, если ∠A=83°. Ответ дайте в градусах.
Т.к. AC является диаметром, значит треугольник ABC - прямоугольный с гипотенузой AC и ∠B=90° (по
теореме об описанной окружности).
Тогда по теореме сумме углов треугольника:
180°=∠A+∠B+∠C
180°=83°+90°+∠C
∠C=180°-83°-90°
∠C=7°
Ответ: ∠C=7°
Поделитесь решением
Присоединяйтесь к нам...
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 45 и 46, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
В треугольнике ABC AC=15, BC=5√
Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.
На прямой AB взята точка M. Луч MD – биссектриса угла CMB. Известно, что /DMC=60°. Найдите угол CMA. Ответ дайте в градусах.
В треугольнике ABC угол C равен 120°, AB=22√3. Найдите радиус окружности, описанной около этого треугольника.
Комментарии:
(2015-05-23 11:18:15) Администратор: Лена, я поправил решение, конечно использовалась не теорема Пифагора, а теорема о сумме углов треугольника.
(2015-05-23 05:42:52) Лена: и 90 ?
(2015-05-23 05:40:42) Лена: откуда 180 градусов?