Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №284FD7

Задача №393 из 1068
Условие задачи:

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=60°. Найдите угол NMB. Ответ дайте в градусах.

Решение задачи:

Угол NBA является вписанным для данной окружности. Опирается этот угол на дугу AN. градусная мера дуги AN = /NBA*2=60°*2=120° (по теореме о вписанном угле).
Градусная мера дуги ANB = 180° (т.к. AB - диаметр), следовательно, градусная мера дуги NB = дуга ANB - дуга AN = 180°-120°=60°
/NMB - тоже является вписанным в окружность и равен половине градусной меры дуги NB (по теореме).
/NMB=60°/2=30°
Ответ: /NMB=30°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №035475

В трапеции ABCD основания AD и BC равны соответственно 48 и 3, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=3.

Задача №D60018

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=9, AC=18, MN=8. Найдите AM.

Задача №7AD11C

Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).

Задача №69CD50

В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.

Задача №CF5F48

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика