Треугольник ABC вписан в окружность с центром в точке O. Найдите градусную меру угла C треугольника ABC, если угол AOB равен 27°.
∠AOB является
центральным, следовательно, градусная мера дуги, на которую он опирается, равна этому углу.
∠C является
вписанным, следовательно, его градусная мера вдвое меньше, чем градусная мера дуги, на которую он опирается (по
теореме о вписанной угле).
∠C=27°/2=13,5°
Ответ: ∠C=13,5°
Поделитесь решением
Присоединяйтесь к нам...
Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 52°, угол ABC равен 13°. Найдите угол ACB. Ответ дайте в градусах.
Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠
AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: