Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.
Площадь
трапеции равна произведению полусуммы оснований на высоту. Основания нам известны, найдем высоту.
По
определению cos(/CDE)=ED/CD
3/5=ED/14
ED=3*14/5=8,4
По
теореме Пифагора:
CD2=ED2+EC2
142=8,42+EC2
196=70,56+EC2
EC2=125,44
EC=11,2 - это и есть высота
Sтрапеции=EC*(BC+AD)/2
Sтрапеции=11,2*(5+40)/2
Sтрапеции=5,6*45=252
Ответ: Sтрапеции=252
Поделитесь решением
Присоединяйтесь к нам...
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 130°.
Радиус окружности, описанной около квадрата, равен 16√
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Комментарии: