Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Площадь
параллелограмма равна произведению высоты на сторону параллелограмма. Sпараллелограмма=BH*AD
Найдем высоту. По
теореме Пифагора запишем:
BD2=HD2+BH2
852=752+BH2
7225=5625+BH2
BH2=1600
BH=40
Sпараллелограмма=BH*AD=BH*(AH+HD)=40*(6+75)=40*81=3240
Ответ: Sпараллелограмма=3240
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD со сторонами AB=19 и CD=22 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Радиус окружности, описанной около квадрата, равен 48√2. Найдите радиус окружности, вписанной в этот квадрат.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=79°. Найдите величину угла BOC. Ответ дайте в градусах.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Комментарии: