На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=11°. Найдите угол NMB. Ответ дайте в градусах.
Оговоримся сразу, рисунок несколько не соответствует условию задачи, на рисунке /NBA скорее равен 50°, поэтому не удивляйтесь, что будут расхождения с рисунком.
Угол NBA является
вписанным для данной окружности. Опирается этот угол на дугу AN. градусная мера дуги AN = /NBA*2=11°*2=22° (по
теореме о вписанном угле).
Градусная мера дуги ANB = 180° (т.к. AB - диаметр), следовательно, градусная мера дуги NB = дуга ANB - дуга AN = 180°-22°=158°
/NMB - тоже является
вписанным в окружность и равен половине градусной меры дуги NB (по
теореме).
/NMB=158°/2=79°
Ответ: /NMB=79°
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 1 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Площадь прямоугольного треугольника равна 8√
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Высота равностороннего треугольника равна 78√
Комментарии: