На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=11°. Найдите угол NMB. Ответ дайте в градусах.
Оговоримся сразу, рисунок несколько не соответствует условию задачи, на рисунке /NBA скорее равен 50°, поэтому не удивляйтесь, что будут расхождения с рисунком.
Угол NBA является
вписанным для данной окружности. Опирается этот угол на дугу AN. градусная мера дуги AN = /NBA*2=11°*2=22° (по
теореме о вписанном угле).
Градусная мера дуги ANB = 180° (т.к. AB - диаметр), следовательно, градусная мера дуги NB = дуга ANB - дуга AN = 180°-22°=158°
/NMB - тоже является
вписанным в окружность и равен половине градусной меры дуги NB (по
теореме).
/NMB=158°/2=79°
Ответ: /NMB=79°
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 1 и 7.
Боковая сторона равнобедренного треугольника равна 25, а основание равно 30. Найдите площадь этого треугольника.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите этот диаметр, если диаметр описанной окружности треугольника ABC равен 8.
ABCDEFGHI – правильный девятиугольник. Найдите угол BAG. Ответ дайте в градусах.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.
Комментарии: