На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
Рассмотрим треугольник АВЕ.
/B=90° (т.к. ABCD -
прямоугольник).
/EAB=45° (по условию задачи).
Тогда по
теореме о сумме углов треугольника /BEA=180°-/B-/EAB=180°-90°-45°=45°.
Следовательно, треугольник ABE -
равнобедренный (по
свойству). Тогда AB=BE (по
определению равнобедренного треугольника).
EC=BC-BE=17-12=5 (т.к. BC=AD).
Рассмотрим треугольник ECD.
Он
прямоугольный (т.к. угол С - прямой).
Тогда по
теореме Пифагора получаем:
ED2=CD2+EC2
ED2=122+52
ED2=144+25=169
ED=13
Ответ: ED=13
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка E — середина стороны KN. Известно, что EL=EM. Докажите, что данный параллелограмм — прямоугольник.
Радиус окружности с центром в точке O равен 50, длина хорды AB равна 96 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=12, DC=48, AC=35.
В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
Комментарии: