Юмор

Автор: Влад
Дано: в школе есть шестиместные туристические палатки. Какое наименьшее число палаток нужн...читать далее

ОГЭ, 9-й класс. Математика: Уравнения и неравенства


Задача №322 из 322. Номер задачи на WWW.FIPI.RU - 176E9F


Решите уравнение x(x2+6x+9)=4(x+3).

Решение задачи:

Если внимательно посмотреть на уравнение, то можно заметить, что скобка в левой части представляет из себя квадрат суммы:
x(x2+6x+32)=4(x+3)
x(x+3)2=4(x+3)
x(x+3)2-4(x+3)=0
Вынесем за общую скобку (x+3):
(x+3)(x(x+3)-4)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому приравняем каждую скобку к нулю и найдем решения:
1) x+3=0 => x1=-3
2) x(x+3)-4=0
x2+3x-4=0
Решим это квадратное уравнение через дискриминант:
D=32-4*1*(-4)=9+16=25
x2=(-3+5)/(2*1)=2/2=1
x3=(-3-5)/(2*1)=-8/2=-4
Ответ: x1=-3, x2=1, x3=-4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Уравнения и неравенства' (от 1 до 322)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика