Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.
Рассмотрим каждое утверждение:
1) "Центры
вписанной и описанной окружностей
равностороннего треугольника совпадают". Центр вписанной окружности - точка пересечения
биссектрис. Центр описанной окружности - точка пересечения
серединных перпендикуляров. По
свойству равностороннего треугольника эти отрезки совпадают. Следовательно, это утверждение верно.
2) "Существует квадрат, который не является ромбом", это утверждение неверно, т.к.
квадрат полностью удовлетворяет
определению ромба.
3) "Сумма углов остроугольного треугольника равна 180°", это утверждение верно, т.к. сумма углов любого треугольника равна 180° (по
теореме).
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.
Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Комментарии:
(2017-02-01 15:24:49) Администратор: Вика, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-31 11:58:51) Вика: Найдите длину хорды окружности радиусом 13 см, если расстояние от центра окружности до хорды равно 5 см. Ответ дайте в см.