Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Уравнения и неравенства


Задача №289 из 318. Номер задачи на WWW.FIPI.RU - 0C3026


Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 4 км/ч, а собственная скорость лодки 6 км/ч?

Решение задачи:

Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-4=2 км/ч, по течению - 6+4=10 км/ч.
Составим уравнения:
движение лодки против течения: S=2t1
движение лодки по течению: S=10t2
общее время поездки:
5=t1+t2+2
t1=3-t2
S=2(3-t2)
S=10t2
Вычтем из первого уравнения второе:
S-S=2(3-t2)-10t2
0=6-2t2-10t2
0=6-12t2
t2=6/12=0,5 часа
Подставляем во второе уравнение:
S=10t2=10*0,5=5 км.
Ответ: 5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Уравнения и неравенства' (от 1 до 318)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика