Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 4 км/ч, а собственная скорость лодки 6 км/ч?
Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-4=2 км/ч, по течению - 6+4=10 км/ч.
Составим уравнения:
движение лодки против течения:
S=2t1
движение лодки по течению:
S=10t2
общее время поездки:
5=t1+t2+2
t1=3-t2
S=2(3-t2)
S=10t2
Вычтем из первого уравнения второе:
S-S=2(3-t2)-10t2
0=6-2t2-10t2
0=6-12t2
t2=6/12=0,5 часа
Подставляем во второе уравнение:
S=10t2=10*0,5=5 км.
Ответ: 5
Поделитесь решением
Присоединяйтесь к нам...
Укажите неравенство, решение которого изображено на рисунке.
1) x2-7x<0
2) x2-49>0
3) x2-7x>0
4) x2-49<0
На координатной прямой отмечено число a.
Найдите наименьшее из чисел a2, a3, a4.
1) a2
2) a3
3) a4
4) не хватает данных для ответа
Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 6 км/ч?
Решите неравенство
Решите систему уравнений
Комментарии: