Расстояние между двумя пристанями по реке равно 24 км. Моторная лодка прошла от одной пристани до другой, сделала стоянку на 1 ч 40 мин и вернулась обратно. Всё путешествие заняло 6 целых и 2/3 ч. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 10 км/ч.
Первое: 6 целых и 2/3 ч. - это 6 часов 40 минут.
Второе: если лодка идет по течению реки, то ее скорость складывается со скоростью реки, а если против течения, то вычитается.
Обозначим:
скорость реки - v
Время лодки в пути по течению - t1
Время лодки в пути против течения - t2
Движение лодки по течению (1):
24=(10+v)t1
Движение лодки против течения (2):
24=(10-v)t2
При этом, время в пути составило t1+t2, и равно это 6 часов 40 минут минус 1 час 40 мин (на стоянку) и равно это 5 часов (3).
(1) t1=24/(10+v)
(2) t2=24/(10-v)
Подставляем в (3):
Приводим к общему знаменателю:
В знаменателе применим формулу
разность квадратов:
480=5*(100-v2)
480=500-5v2
5v2=500-480
5v2=20
v2=4
v=2 км/ч
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
Найдите корень уравнения 3x+3=5x.
Укажите решение системы неравенств
х-3,7≤0,
х-2≥1.
1)
2)
3)
4)
Решите уравнение (x-2)2(x-3)=12(x-2).
На координатной прямой отмечено число c. Расположите в порядке возрастания числа 1c; c; c2.
1) c2; c; 1/c
2) c2; 1/c; c
3) 1/c; c; c2
4) 1/c; c2; c
Расстояние между пристанями А и В равно 126 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот проплыл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.
Комментарии: