Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
25° и 100° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /ABC=/BCD=25°+100°=125°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360° = 125° + 125° + /BAD + /ADC,
/BAD+/ADC=360°-125°-125°=110°, а учитывая, что /BAD=/ADC (по тому же
свойству равнобедренной трапеции), получаем /BAD=/ADC=110°/2=55°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 55°.
Поделитесь решением
Присоединяйтесь к нам...
В прямоугольном треугольнике катет и гипотенуза равны 16 и 20 соответственно. Найдите другой катет этого треугольника.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.
Найдите площадь трапеции, изображённой на рисунке.
Какие из следующих утверждений верны?
1) Средняя линия трапеции равна сумме её оснований.
2) Диагонали ромба перпендикулярны.
3) Площадь треугольника меньше произведения двух его сторон.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Комментарии:
(2015-05-24 18:26:39) Администратор: Аида, Вы забыли еще про два угла, посмотрите повнимательней.
(2015-05-24 17:11:43) Аида: 125+125= 250 же будет,почему вы 360 написали?