Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Рассмотрим каждое утверждение:
1) "Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны". Это утверждение верно по
первому признаку подобия.
2) "Вертикальные углы равны", это утверждение верно, по
свойству углов.
3) "Любая биссектриса равнобедренного треугольника является его медианой", это утверждение неверно, т.к., по
свойству равнобедренного треугольника, только
биссектриса, проведенная к основанию, совпадает с
медианой и высотой.
Поделитесь решением
Присоединяйтесь к нам...
Периметр треугольника равен 50, одна из сторон равна 20, а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
В треугольнике ABC угол C прямой, BC=6, sinA=0,6. Найдите AB.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.
Комментарии:
(2017-01-26 23:57:40) Администратор: Анастасия, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-25 18:27:37) Анастасия: Какие из следующих утверждений верны? 1.Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу. 2.Площади трапеции равна произведению основания трапеции на высоты. 3.Треугольника со сторонами 1,2,4 не существуют.