В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
По
определению синуса sinA=BC/AB => AB=BC/sinA=4/0,8=5.
Ответ: AB=5.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.
Найдите площадь параллелограмма, изображённого на рисунке.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CMD.
Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Комментарии: