Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Проведем
высоты, как показано на рисунке.
Эти
высоты, естественно, равны друг другу.
∠DCE=∠BCD-90° (так как CE-
высота)
∠DCE=150°-90°=60°
cos∠DCE=CE/CD (по
определению косинуса).
cos60°=CE/32
CE=32cos60° (по
таблице cos60°=1/2=0,5).
CE=32*0,5=16
CE=AF=16 (как уже было сказано ранее).
sin∠ABC=AF/AB (по
определению синуса).
sin45°=16/AB
AB=16/sin45° (по
таблице sin45°=√
Ответ: 16√
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=21, AO=75.
Сторона равностороннего треугольника равна 14√3. Найдите медиану этого треугольника.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 1 м, высота фонаря 9 м?
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=34.
Комментарии: