Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Проведем
высоты, как показано на рисунке.
Эти
высоты, естественно, равны друг другу.
∠DCE=∠BCD-90° (так как CE-
высота)
∠DCE=150°-90°=60°
cos∠DCE=CE/CD (по
определению косинуса).
cos60°=CE/32
CE=32cos60° (по
таблице cos60°=1/2=0,5).
CE=32*0,5=16
CE=AF=16 (как уже было сказано ранее).
sin∠ABC=AF/AB (по
определению синуса).
sin45°=16/AB
AB=16/sin45° (по
таблице sin45°=√
Ответ: 16√
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.
Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠
AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=7.
Точка О – центр окружности, /ACB=24° (см. рисунок). Найдите величину угла AOB (в градусах).
Комментарии: