Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=32.
Проведем
высоты, как показано на рисунке.
Эти
высоты, естественно, равны друг другу.
∠DCE=∠BCD-90° (так как CE-
высота)
∠DCE=150°-90°=60°
cos∠DCE=CE/CD (по
определению косинуса).
cos60°=CE/32
CE=32cos60° (по
таблице cos60°=1/2=0,5).
CE=32*0,5=16
CE=AF=16 (как уже было сказано ранее).
sin∠ABC=AF/AB (по
определению синуса).
sin45°=16/AB
AB=16/sin45° (по
таблице sin45°=√
Ответ: 16√
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinA=7/17, AC=4√
Человек ростом 1,5 м стоит на расстоянии 7 м от столба, на котором висит фонарь на высоте 3,6 м. Найдите длину тени человека в метрах.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии: