ОГЭ, Математика. Геометрия: Задача №E77CF5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №E77CF5

Задача №245 из 1087
Условие задачи:

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 130°.

Решение задачи:

Проведем отрезок ОА.
/DOA - центральный угол для данной окружности. Он опирается на дугу AD, равную 130°. Следовательно, /DOA тоже равен 130°.
/AOC - смежный углу DOA, поэтому /AOC=180°- /DOA=180°-130°=50°.
Треугольник ACO - прямоугольный, т.к. радиус всегда перпендикулярен касательной (по свойству касательной). Т.е. /ОАС=90°. Применяя теорему о сумме углов треугольника, можем записать:
180°=/AСO+/CAO+/AOC.
/AСO=180°-/CAO-/AOC=180°-90°-50°=40°.
Ответ: /ACO=40°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EE99B1

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.



Задача №0D8723

В треугольнике ABC AB=BC=53, AC=56. Найдите длину медианы BM.



Задача №045125

Высота равностороннего треугольника равна 153. Найдите его периметр.



Задача №05D5F0

Катеты прямоугольного треугольника равны 15 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №D13381

На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E . Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика