ОГЭ, Математика. Геометрия: Задача №4F6A6A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F6A6A

Задача №231 из 1087
Условие задачи:

Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна 180°.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника". Высота, проведенная к основанию является и медианой, и биссектрисой (по свойству равнобедренного треугольника), т.е. является серединным перпендикуляром. А центром описанной окружности является точка пересечения серединных перпендикуляров ( теорема об описанной окружности). Следовательно, это утверждение верно.
2) "Квадрат является прямоугольником", это утверждение верно (по определению).
3) "Сумма углов любого треугольника равна 180°", это утверждение верно (по теореме).

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №064B83

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 3:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 41.



Задача №BC288C

В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.



Задача №1D3364

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.



Задача №4A3A58

Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.



Задача №8E2271

В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика