Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 3. Найдите радиус окружности.
Рассмотрим треугольник АОВ. АО=ОВ, т.к. это радиусы окружности. Следовательно,
треугольник АОВ - равнобедренный. Следовательно, /ОВА = /ОАВ (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника 180°=/AOB+/ОАВ+/ОBA. => /ОАВ+/ОBA=180°-60°=120°
А т.к. /ОАВ=/ОBA, то /ОАВ=/ОBA=120°/2=60°
Следовательно треугольник АОВ - равносторонний (по свойству равностороннего треугольника). Следовательно, R=ОВ=ОА=АВ=3.
Ответ: R=3.
Поделитесь решением
Присоединяйтесь к нам...
Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD.
Основания трапеции равны 5 и 13, а высота равна 9. Найдите площадь этой трапеции.
На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=66, AC=44, MN=24. Найдите AM.
Комментарии:
(2020-04-30 20:17:06) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2020-04-30 16:04:19) : на окружности по разные стороны от диматера AB взяты точки M и N