Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
По свойству
равнобедренной трапеции - углы при основании равны.
Тогда /ADC=30°+45°=75°.
Сумма углов четырехугольника равна 360°, тогда получаем, что:
360°=75°+75°+/DCB+/CBA,
/DCB+/CBA=360°-75°-75°=210°, а учитывая, что /DCB=/CBA (по тому
свойству равнобедренной трапеции), получаем /DCB=/CBA=210°/2=105°, эти углы и есть бОльшие в трапеции
Ответ: 105
Поделитесь решением
Присоединяйтесь к нам...
На окружности с центром O отмечены точки A и B так, что /AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Радиус окружности, описанной около квадрата, равен 16√
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC.
Синус острого угла A треугольника ABC равен . Найдите CosA.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 208. Найдите стороны треугольника ABC.
Комментарии: