ОГЭ, Математика. Геометрия: Задача №4AEE60 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4AEE60

Задача №172 из 1087
Условие задачи:

Сторона ромба равна 40, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Решение задачи:

Рассмотрим треугольник АВС, этот треугольник прямоугольный (по условию задачи). /A=60°, следовательно по теореме о сумме углов треугольника /АВС = 180°-90°-60°=30°. По свойству прямоугольного треугольника АС=АВ/2=40/2=20. Следовательно вторая половина стороны ромба = 40-20=20. Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: длины обоих отрезков равны 20.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №13D897

На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку F. Докажите, что сумма площадей треугольников BFC и AFD равна половине площади трапеции.



Задача №764DFB

Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.



Задача №20E8E9

Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.



Задача №F4E03B

Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.



Задача №43740F

Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика