Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=20°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 20°*2=40°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=40°.
Ответ: /BOC=40°.
Поделитесь решением
Присоединяйтесь к нам...
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=36°. Найдите угол NMB. Ответ дайте в градусах.
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=64, HC=16 и ∠ACB=37°. Найдите угол AMB. Ответ дайте в градусах.
На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
Сторона равностороннего треугольника равна 10√
Комментарии: