Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны"? это утверждение верно по
первому признаку подобия.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Из прямоугольников, только у квадрата диагонали перпендикулярны (
свойство квадрата, которого нет у прямоугольников).
3) "У равностороннего треугольника есть
центр симметрии", это утверждение неверно. Есть три
оси симметрии, совпадающих с любой из
высот
равностороннего треугольника.
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
Площадь круга равна 78. Найдите площадь сектора этого круга, центральный угол которого равен 60°.
На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.
Стороны AC, AB, BC треугольника ABC равны 3√
Комментарии: