ОГЭ, Математика. Геометрия: Задача №F5E39D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F5E39D

Задача №115 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой", это утверждение верно по свойству параллельных прямых.
2) "Треугольник со сторонами 1, 2, 4 существует", это утверждение неверно,т.к. длина одной из сторон не может быть больше суммы длин двух других сторон (а 4>1+2).
3) "Если в ромбе один из углов равен 90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к. ромб - частный случай параллелограмма, то к нему и применимы все свойства параллелограмма, следовательно (по свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0EF7A9

В треугольнике ABC AC=15, BC=57, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.



Задача №23E335

Радиус окружности, описанной около равностороннего треугольника, равен 16. Найдите высоту этого треугольника.



Задача №116D41

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.



Задача №FD5D43

Периметр квадрата равен 184. Найдите площадь квадрата.



Задача №165C36

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.

Комментарии:


(2014-11-04 14:54:06) Администратор: Галина, очень рад, что наш сайт Вам помог!
(2014-11-04 14:44:19) Галина: всё верно у меня стоит пять за все эти задания в том числе и это!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика