Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Площадь
трапеции равна произведению полусуммы оснований на высоту. Основания нам известны, найдем высоту трапеции.
Проведем высоту как показано на рисунке. Получившийся треугольник является
прямоугольным. По
определению синуса можем записать: sin30°=h/3 => h=3*sin30°, sin30°=1/2 (
табличное значение).
h=3*1/2=1,5.
Sтрапеции=(3+9)/2*1,5=9
Ответ: площадь трапеции равна 9.
Поделитесь решением
Присоединяйтесь к нам...
Площадь параллелограмма ABCD равна 180. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.
Найдите площадь трапеции, изображённой на рисунке.
В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
Из вершины прямого угла C треугольника
ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Комментарии: