ОГЭ, Математика. Геометрия: Задача №7BF1F3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №7BF1F3

Задача №1084 из 1087
Условие задачи:

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=57°. Найдите величину угла BOC. Ответ дайте в градусах.

Решение задачи:

Так как треугольник ABC равнобедренный, то:
∠BAC=∠BCA=x (по свойству равнобедренного треугольника)
По теореме о сумме углов треугольника:
180°=∠BAC+∠BCA+∠ABC
180°=x+x+57°
180°-57°=2x
123°=2x
x=123°/2=61,5°=∠BAC
∠BAC - вписанный в окружность угол, следовательно градусная мера дуги, на которую он опирается (дуга BC) вдвое больше самого угла:
2*61,5°=123°
∠BOC - центральный угол, следовательно, он равен градусной мере дуги, на которую он опирается, т.е. 123°
Ответ: 123

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9EA778

Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №8920CF

В прямоугольном треугольнике ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 215. Найдите sin∠ABC.



Задача №72EB41

Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.



Задача №BE2459

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №29D911

Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика