В параллелограмме KLMN точка A — середина стороны KN. Известно, что AL=AM. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники AKL и ANM. KA=AN, т.к. точка A - середина KN, AL=AM (из условия задачи), KL=NM (по свойству параллелограмма). Соответственно, треугольники AKL и ANM равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /AKL=/ANM.
KL||NM (по определению параллелограмма), рассмотрим сторону KN как секущую к этим параллельным сторонам. Тогда получается, что сумма углов AKL и ANM равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны KN и LM, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону KL как секущую к этим параллельным сторонам.
/NKL и /KLM - внутренние односторонние. Следовательно их сумма равна 180°. А так как /NKL=90°, то /KLM тоже равен 90°.
Аналогично доказывается, что /LMN тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
В треугольнике ABC угол C прямой, AC=6, cosA=0,6. Найдите AB.
Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.
Найдите площадь ромба, если его диагонали равны 39 и 2.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: