Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Рассмотрим треугольник ABO.
По
определению,
ромб это
параллелограмм с равными сторонами, следовательно, на
ромб распространяются все
свойства параллелограмма.
Тогда, диагонали
ромба точкой пересечения делятся пополам (по
третьему свойству параллелограмма), т.е. OB=68/2=34
Треугольник ABO -
прямоугольный, так как ОА - расстояние до стороны
ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=17/34=1/2 => ∠ABO=30° (
табличное значение).
Треугольники EBO и CBO равны (по
трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: 60 и 120
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
Найдите тангенс угла
AOB.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.
В треугольнике ABC AC=15, BC=5√
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Комментарии: