Сторона квадрата равна 40√2. Найдите радиус окружности, описанной около этого квадрата.
Проведем отрезки из центра
квадрата к двум его углам, как на рисунке.
Заметим, что:
1) Эти отрезки и являются радиусами окружности.
2) Получившийся треугольник является
прямоугольным (по свойству квадрата).
Тогда мы можем применить
теорему Пифагора (пусть сторона квадрата - это "а"):
a2=R2+R2
a2=2R2
(40√2)2=2R2
По первому правилу действий со степенями:
402*(√2)2=2R2
402*2=2R2 |:2
402=R2
40=R
Ответ: 40
Поделитесь решением
Присоединяйтесь к нам...
Высота AH ромба ABCD делит сторону CD на отрезки DH=8 и CH=2. Найдите высоту ромба.
Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Высота AH ромба ABCD делит сторону CD на отрезки DH=24 и CH=2. Найдите высоту ромба.
Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).
Комментарии: