Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.
Проведем радиусы окружности к точкам касания со сторонами
квадрата, как показано на рисунке.
Обозначим ключевые точки A, B, C и D.
ABCD образует четырехугольник.
В этом четырехугольнике:
∠A=90° (по определению квадрата).
∠B=∠D=90° (по свойству касательной).
Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°).
Т.е. ABCD - прямоугольник (по
определению).
По свойству прямоугольника:
AB=CD=R
AD=BD=R
Т.е. ABCD - квадрат.
Из рисунка очевидно, что радиус равен половине стороны квадрата:
R=56/2=28
Ответ: 28
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренную трапецию, периметр которой равен 180, а площадь равна 1620, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Площадь параллелограмма ABCD равна 180. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
У треугольника со сторонами 4 и 16 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 4. Чему равна высота, проведённая ко второй стороне?
Комментарии: