Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.
Проведем радиусы окружности к точкам касания со сторонами
квадрата, как показано на рисунке.
Обозначим ключевые точки A, B, C и D.
ABCD образует четырехугольник.
В этом четырехугольнике:
∠A=90° (по определению квадрата).
∠B=∠D=90° (по свойству касательной).
Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°).
Т.е. ABCD - прямоугольник (по
определению).
По свойству прямоугольника:
AB=CD=R
AD=BD=R
Т.е. ABCD - квадрат.
Из рисунка очевидно, что радиус равен половине стороны квадрата:
R=56/2=28
Ответ: 28
Поделитесь решением
Присоединяйтесь к нам...
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 52°. Найдите угол B этой трапеции. Ответ дайте в градусах.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен
60°, а радиус окружности равен 6.
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 28 и 100.
Комментарии: