ОГЭ, Математика. Геометрия: Задача №221DAD | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №221DAD

Задача №793 из 1087
Условие задачи:

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.

Решение задачи:

По свойству касательной:
OF - радиус окружности, т.к. OF проходит через центр окружности и перпендикулярен касательной AC.
AG=AF
BG=BH=x
CH=CF=y
AF найдем по теореме Пифагора:
AO2=AF2+OF2
132=AF2+52
169=AF2+25
AF2=144
AF=12=AG
EH - высота параллелограмма. EH=OH+OE=5+9=14
SABC=p*r, где p - полупериметр, r - радиус вписанной окружности.
p=(AB+BC+AC)/2.
Рассмотрим треугольники ABC и CDA.
AD=BC и AB=CD (по свойству параллелограмма).
AC - общая сторона.
Следовательно, по третьему признаку равенства треугольников, данные треугольники равны.
Тогда: SABCD=2*SABC
И в тоже время SABCD=EH*AD.
Приравняем полученные равенства:
p*r=EH*AD/2
(AB+BC+AC)/2*r=EH*BC/2
(AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC)
(12+x+x+y+y+12)*5=14*(x+y)
(24+2x+2y)*5=14*(x+y)
120+5(2x+2y)=14*(x+y)
120+10(x+y)=14*(x+y)
120=4(x+y)
x+y=30=BC=AD
SABCD=EH*AD=14*30=420
Ответ: 420

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №2D06EF

Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.



Задача №051A2A

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.



Задача №3A541C

Площадь прямоугольного треугольника равна 323/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №7DB8D7

Стороны AC, AB, BC треугольника ABC равны 22, 5 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°.



Задача №3B36AD

Найдите площадь трапеции, изображённой на рисунке.

Комментарии:


(2016-04-18 11:48:14) Администратор: Даниил, конечно это опечатка, спасибо огромное, что нашли. Исправлено!
(2016-04-17 23:14:25) Даниил: (AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC) (12+x+x+y+y+4)*5=14*(x+y) откуда 4=AF

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства касательной к окружности:
1) Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2) Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика