На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.

В правом столбце указаны значения производной функции в точках A, B, C
и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
| ТОЧКИ | ЗНАЧЕНИЯ ПРОИЗВОДНОЙ |
| А | 1) -0,7 |
| B | 2) 1,4 |
| C | 3) -1,8 |
| D | 4) 0,5 |
Производную от функции, в данном случае, лучше рассматривать как тангенс угла наклона касательной.
Если тангенс положительный (т.е. угол острый), то и производная положительна и наоборот.
Тогда сразу можно сказать, что в точках B и C - значение производной положительно.
А в точках A и D - отрицательно.
Если посмотреть на таблицу углов, то ставится понятно, что при увеличени угла значение тангенса увеличивается (tg0°=0, tg45°=1, tg90°=+∞).
Следовательно, значение тангенса в точке B больше значения тангенса в точке C.
Получаем, что:
В точке B - значение производной равно 1,4.
В точке C - значение производной равно 0,5.
При дальнейшем увеличении угла (от 90° до 180°) значение тангенса меняется от -∞ до 0, т.е. уменьшается по модулю.
Следовательно, в точке A значение производной равно -1,8, а в точке D - значение производной равно -0,7.
Ответ:
| A | B | C | D |
| 3) | 2) | 4) | 1) |
Поделитесь решением
Присоединяйтесь к нам...
На графике показана зависимость крутящего момента автомобильного двигателя от числа оборотов в минуту. На горизонтальной оси отмечено число оборотов в минуту, на вертикальной оси — крутящий момент в Н?м. Чтобы автомобиль начал движение, крутящий момент должен быть не менее 20 Н*м.
Определите по графику, какого наименьшего числа оборотов двигателя в минуту достаточно, чтобы автомобиль начал движение.
На рисунке точками показаны объёмы месячных продаж холодильников
в магазине бытовой техники. По горизонтали указываются месяцы,
по вертикали — количество проданных холодильников. Для наглядности точки соединены линией.
Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников.
| ИНТЕРВАЛЫ ВРЕМЕНИ | ХАРАКТЕРИСТИКИ |
| А) январь-март | 1) продажи за первый и второй месяцы квартала совпадают |
| Б) апрель-июнь | 2) ежемесячный объём продаж достигает максимума за весь период |
| В) июль-сентябрь | 3) за этот период ежемесячный объём продаж увеличился на 300 холодильников |
| Г) октябрь-декабрь | 4) за последний месяц периода было продано меньше 200 холодильников |
На графике изображена зависимость крутящего момента двигателя от числа оборотов в минуту. На горизонтальной оси отмечено число оборотов
в минуту, на вертикальной оси — крутящий момент в Н*м.
Пользуясь графиком, поставьте в соответствие каждому интервалу числа оборотов в минуту характеристику крутящего момента.
| ИНТЕРВАЛЫ | ХАРАКТЕРИСТИКИ |
| А) 0–2000 об./мин. | 1) крутящий момент не меняется на всём интервале |
| Б) 2000–3000 об./мин. | 2) при увеличении числа оборотов самый быстрый рост крутящего момента |
| В) 3000–4000 об./мин. | 3) крутящий момент не превышает 40 Н*м на всём интервале |
| Г) 4000–6000 об./мин. | 4) при увеличении числа оборотов крутящий момент падает |
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и значениями их производной в точке x=1.
ГРАФИКИ
А)
Б)
В)
Г) 
ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) 0,2
2) -4/3
3) -0,8
4) 5
В таблице под каждой буквой укажите соответствующий номер.
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ФУНКЦИИ
А)
Б)
В)
Г) 
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b>0
3) k>0, b<0
4) k<0, b>0
В таблице под каждой буквой укажите соответствующий номер.
определена функция
. Производной функции ƒ в точке x0 называется предел, если он существует, 
.
определена функция
. Производной функции называется такое число A, что функцию в окрестности U(x0) можно представить в виде ƒ(x0+h)=ƒ(x0)+Ah+o(h), если A существует.
Комментарии: