Косинус острого угла А треугольника равен . Найдите sinA.
Воспользуемся основной тригонометрической формулой:
sin2A+cos2A=1
По
второму правилу работы со степенями:
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.
Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника BKP к площади треугольника AMK.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=21, CM=15. Найдите OM.
Комментарии:
(2023-10-27 20:07:34) : 6F6C4D
(2023-10-27 20:06:38) : 6F6C4D