Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=2x+6x-x2, при x≥0
y=2x+6(-x)-x2, при x<0
8x-x2, при x≥0
y=-4x-x2, при x<0
Исследуем каждую подфункцию:
1) y=8x-x2
Это квадратичная функция, следовательно график - парабола. Коэффициент а=-1 (т.е. меньше нуля), следовательно ветви параболы направлены вниз. Найдем точки пересечения графика с осью Х, для этого решим уравнение 8x-x2=0
x(8-x)=0
x1=0
x2=8
2) y=-4x-x2
Это квадратичная функция, следовательно график - парабола. Коэффициент а=-1 (т.е. меньше нуля), следовательно ветви параболы направлены вниз. Найдем точки пересечения графика с осью Х, для этого решим уравнение -4x-x2=0
x(-4-x)=0
x1=0
x2=-4
Построим график для каждой подфункции и объединим их.
1) y1=8x-x2, при x≥0 (красный график)
X | 0 | 2 | 4 | 6 |
Y | 0 | 12 | 16 | 12 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | 3 | 4 | 3 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) | ![]() |
Б) | ![]() |
В) | ![]() |
ФОРМУЛЫ 1) y=-1/4x 2) y=4/x 3) y=-4/x 4) y=1/4x |
Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наибольшую температуру воздуха 24 января. Ответ дайте в градусах Цельсия.
Постройте график функции y=x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Комментарии: