Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x+2x, при x≥0
x2-6(-x)+2x, при x<0
x2-4x, при x≥0
x2+8x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0
Это квадратичная функция, следовательно график - парабола. Коэффициент при x2 равен 1, т.е. больше нуля, следовательно ветви параболы направлены вверх:
| X | 0 | 1 | 2 | 4 |
| Y | 0 | -3 | -4 | 0 |

| X | 0 | -1 | -2 | -3 |
| Y | 0 | -7 | -12 | -15 |



Поделитесь решением
Присоединяйтесь к нам...
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 13 июля. Ответ дайте в градусах Цельсия.
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3) 
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(x)<0 при -1<x<5
2) Функция возрастает на промежутке [2; +∞)
3) Наименьшее значение функции равно -5
Андрей и Иван соревновались в 50-метровом бассейне на дистанции 100 м. Графики их заплывов показаны на рисунке. По горизонтальной оси отложено время, а по вертикальной – расстояние пловца от старта. Кто выиграл соревнование? В ответе запишите, на сколько секунд он обогнал соперника.
Постройте график функции

Определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: