Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x+2x, при x≥0
x2-6(-x)+2x, при x<0
x2-4x, при x≥0
x2+8x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0
Это квадратичная функция, следовательно график - парабола. Коэффициент при x2 равен 1, т.е. больше нуля, следовательно ветви параболы направлены вверх:
X | 0 | 1 | 2 | 4 |
Y | 0 | -3 | -4 | 0 |
X | 0 | -1 | -2 | -3 |
Y | 0 | -7 | -12 | -15 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b<0 2) k<0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) a<0, c>0
2) a>0, c>0
3) a>0, c<0
В таблице под каждой буквой укажите соответствующий номер.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-3 2) y=x-3 3) y=-3x 4) y=3x |
А) ![]() |
Б) ![]() |
В) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-(2/x) 2) y=x2-2
3) y=2x
В таблице под каждой буквой укажите соответствующий номер.
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: