Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x+2x, при x≥0
x2-6(-x)+2x, при x<0
x2-4x, при x≥0
x2+8x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0
Это квадратичная функция, следовательно график - парабола. Коэффициент при x2 равен 1, т.е. больше нуля, следовательно ветви параболы направлены вверх:
| X | 0 | 1 | 2 | 4 |
| Y | 0 | -3 | -4 | 0 |

| X | 0 | -1 | -2 | -3 |
| Y | 0 | -7 | -12 | -15 |



Поделитесь решением
Присоединяйтесь к нам...
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k<0, b>0
В) k>0, b<0
ГРАФИКИ
1)
2)
3) 
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
x2-4x+4 при x≥-1
-9/x при x<-1
и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
| ФУНКЦИИ | ГРАФИКИ | ||
|
1) y=x2+2 2) y=(1/2)x 3) y=-6/x 4) y=(-1/2)x |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В) 
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b>0
3) k>0, b<0
В таблице под каждой буквой укажите соответствующий номер.
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наибольшую температуру воздуха 24 января. Ответ дайте в градусах Цельсия.
Комментарии: