Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x+2x, при x≥0
x2-6(-x)+2x, при x<0
x2-4x, при x≥0
x2+8x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0
Это квадратичная функция, следовательно график - парабола. Коэффициент при x2 равен 1, т.е. больше нуля, следовательно ветви параболы направлены вверх:
| X | 0 | 1 | 2 | 4 |
| Y | 0 | -3 | -4 | 0 |

| X | 0 | -1 | -2 | -3 |
| Y | 0 | -7 | -12 | -15 |



Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) f(-1)=f(5)
2) Функция убывает на промежутке [2; +∞)
3) f(x)>0 при x<-1 и при x>5
Постройте график функции y=|x|x+3|x|-5x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
| ФОРМУЛЫ | Графики | ||
|
1) y=-x2+7x-14 2) y=x2-7x+14 3) y=x2+7x+14 4) y=-x2-7x-14 |
A)
|
Б)
|
В)
|
Постройте график функции
-x2+10x-21 при x≥3
-x+3 при x<3
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(-1)=f(3)
2) Наибольшее значение функции равно 3
3) f(x)>0 при -1<x<3
Комментарии: