Постройте график функции y=x2-6|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-6x+2x, при x≥0
x2-6(-x)+2x, при x<0
x2-4x, при x≥0
x2+8x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0
Это квадратичная функция, следовательно график - парабола. Коэффициент при x2 равен 1, т.е. больше нуля, следовательно ветви параболы направлены вверх:
X | 0 | 1 | 2 | 4 |
Y | 0 | -3 | -4 | 0 |
X | 0 | -1 | -2 | -3 |
Y | 0 | -7 | -12 | -15 |
Поделитесь решением
Присоединяйтесь к нам...
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=x имеет с графиком ровно одну общую точку.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком
ни одной общей точки.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: